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Abstract The Schroedinger equation is solved exactly within the Born—-Oppenheimer
approximation for a simulacrum of the H32+-i0n. The ion is assumed to form an
isosceles triangle and the ground state energy is obtained over its geometrical parame-
ter space. No multi-center molecular integrations are required. We indicate how the
approximation to the actual molecule can be improved systematically.
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1 Introduction

The Trihydrogen cation H3Jr was identified, by mass spectroscopy, in 1911 by Thomson
[1]. Twelve years later Hogness and Lunn [2] found that it could be produced by
the proton exchange H22 + H, — H; + H and would readily lose an electron.
Subsequently it was found that H3+ is present in interstellar clouds and is among
the most abundant molecular species in the universe. This led to the question of the
stability of the dication H32+, which has remained somewhat controversial to the
present, though the consensus is that it is unstable.

The first quantum treatment was by Gordadse [3,4] in (1935), who assumed the
protons were fixed, equally spaced along a straight line or formed an equilateral tri-
angle. He used the variational method, as have all subsequent studies, based on a
one-parameter trial function built from the hydrogen Is-state. In spite of the simplic-
ity of the trial functions, he found several of the multi-center integrations intractable,
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requiring not too well controlled approximations, and concluded that neither configu-
ration was stable. About the same time Coulson [5] carried out a LCMO study of H32 +,
He used only a single molecular orbital and his energy values lie somewhat higher than
those in [4]. The difficulty of these multi-center integrations have continued to dog
such calculations and may be what prompted Eyring’s comment that H3Jr is “the scan-
dal of modern chemistry” [6]. The first extensive study of H32+ using electronic digital
computers was by Conroy in 1964 [7-10], who devised an insightful set of variational
wave functions and used Monte-Carlo algorithms for the integrations, remarking that
“these integrations presented grave obstacles”. This and subsequent calculations [11-
15], mostly confined to the linear and equilateral triangle configurations, have upheld
Gordadse’s conclusion that the ion is unstable. An attempt to produce the dication
experimentally [16, 17] was unsuccessful.

The purpose of this note is to suggest that it is possible to avoid the variational
method and consequent multi-center integrations entirely and that the Schroedinger
equation can be solved exactly for a sequence of Hamiltonians that converge to the
correct one. This note is intended as a proof of principle, and deals only with the first
Hamiltonian in the sequence; it is equivalent to keeping only the hydrogen 1s state
and is simple enough that most of the calculations can be done “by hand”. We also
assume that the ion forms an isosceles triangle and the ground-state energy (ignoring
hyperfine effects) is examined as a function of a side and adjacent angle. Even so, the
results lie reasonably close to the most recent values.

2 Hydrogen atom

Let the one-electron Hamiltonian of an atom ( or indeed, any system) be
H=p>+V(QF) 2.1

and have bound-state eigenfunctions and energy levels {¢,, E,}. Then, by complete-
ness,

VE =D v < ¢al: 0@ =VE@la > . 2.2)

Thus, if we ignore the continuum states, which will be of no interest in the sequel,
then we have a sequence of Hamiltonians

n
Hy=p*+ D vm <l 2.3)

m=0

and it is easily checked that the Schroedinger equation (we adopt units: 7 = 2m =
2
e/2=1)

(V2= EW @) == D vn(P)hn
m=0

Am

/d3¢;2 ®YE) 2.4
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has precisely the first n of the eigenstates of H. By transforming to momentum space
and writing E = —e < 0 (since we are only concerned with bound states) (4) becomes
the integral equation

7 . Am ]_é )\m
Py = > % 25)

2
s €+k

Next, by the Parseval relation for the Fourier transform [2] we have the consistency
condition

Ay = G /¢ (v (k)dk = ZAqu

m (k) (k
1 /v()d)() 2.6)

M ry ) K

That is to say, the energy levels € and corresponding A’s are determined by the matrix
equations

A—DA =0, Det/A—T =0 2.7)

where A is the column vector (Ao, - - - , A,)T. In the next section we illustrate this by
working out Hy and H; for hydrogen.

It should be pointed out that in (2.2) the ¢, may be any complete set of functions,
not just the eigenfunctions of H, though the low order approximations are unlikely to
be as accurate.

2.1 Hydrogen atom

The lowest two bound-state wave functions for Hydrogen are [3]

1
po(r) =72, =1, andp1(r) = 321) P2 =r)e?, € =-.

4
(2.8)
Hence,
Lo 8w ~ o 32V2m@k? - 1)
Wb = G B0 ==
A 8T 8V2m @k - 1)
vo(k) = (k2 T vi(k) = W (2.9)

and the matrix elements of A are (¢ = x2)
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3
Aoozzl
(1+x)3
8x3 +20x% + 6x + 7
Ay =2 T OX (2.10)
(2x + 1)3
a L 32V2 24507
= T A+ 00 +2x)3
8v2 4x?412x—7
Ay =

27 (14 x)2(1 +2x)2°

It is not difficult to check that the determinant in (2.7) has the form (x — 1)(2x —
1)P(x)/Q(x) where P and Q are polynomials with positive coefficients, so its sole
positive real roots are x = 1/2 and x = 1. The first Eq. (2.7) has the solution 1y = 1,
A1 = Ajo/(1 — Ago) and it is straightforward to check that inverting (2.5) with these
values of x reproduces (2.8).

3 Triangular molecule

Consider the three-proton system, in the Born—Oppenheimer approximation, where
one lies at the origin and two lie in the x — z-plane at positions

Ry = R(cosa, 0, £sina). 3.1

The Schroedinger equation for an electron subject to this configuration is

—(V4+EW@H =[VHO +VF - E+) +V(F = ROW®@). (3.2)
Setting £ = —¢, (3.2) has the immediate solution in momentum space
~ o Dok s o
Uk) = “O—()[xo + etk Rej 4 o R-) (3.3)
k?+ €

with

1 DA D AT
o= s / ko))

= s / dio (k)™ " 4 (k). (34)
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Therefore, by defining the four integrals

P B S (L)
0= 2n)3 k2 4 €
1 @5 (R)dok) 1k
I — ik-Rs 3.5
=T @) Zre © )
. 1 =g (k) Do (k) o—ik(Ry—R)
@2m)? k2 +e

we have the three consistency equations

M= Toro+ 1Ay + 1A
Ay = I_T_)\() + oA+ + 1A 3.6)
A =1_Xiy+ [1*)L+ + Igh_.

The four integrals (3.5) are real, I = I_ and is independent of «. From (3.6) we
see that the ground state energy e is fixed by the determinantal equation (¢ = x2)

FIR.l=(o— L — DIl — > + (o — DL —2121=0. (3.7

The integrals (3.5) are elementary:

I — 23+ x)
T U+ x03
—R _ ,—Rx
I+ = f(R,x) = 6 ¢ ¢ + le_R[x2 -5+ R(x2 — D]t (3.8

x2—=D2 | Rx2-1 8
I = f2Rsina, x).

The spatial wave function is obtained through the Fourier inversion of (3.3) by
which we find in spherical coordinates

Y(r.0,¢) =

e —e 1— I et — TPt TP — AP
v ()] + ]} @
r 21 P+ p—

where N is a normalization factor and

pr = /r2+r2 — 2rR(sinf cos ¢ cos o = cos f sina). (3.10)

4 Results and discussion

The ground state energy E = —e = —x? is given by the largest positive root x of
(3.7) which is that of the second factor. This is most easily determined graphically and

the results for four cases are given below.
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Fig. 1 Ground-State energy € versus R. From top to bottom at R = 1: « = 7/8, ¢ = 7/6, @ = /3,
a=m/2

4.1 Linear configuration: o = /2.

R X R X

0 2.1349367 1.2 1.8036179
0.1 2.1307780 1.4 1.7347596
0.2 2.1187612 1.6 1.6694538
0.3 2.0999631 1.8 1.6082098
0.4 2.0756736 2.0 1.5512046
0.5 2.0471617 2.2 1.4984244
0.6 2.0155626 2.4 1.4497481
0.7 1.9818363 2.6 1.4049973
0.8 1.9467667 2.8 1.3639650
1.0 1.8749557 3.0 1.3264326

The ground-state energy versus R for « = /2 is shown in Fig. 1 and the total
molecular energy in Fig. 2; the ion is unstable.

4.2 Equilateral triangle « = /6

R X R X
0.0 2.1349367 1.2 19095172
0.1 2.1328424 1.4 1.8497556
0.2 2.1266444 1.6 1.7893258
0.3 2.1165658 1.8 1.7294701
0.4 2.1029191 2.0 1.6711139
0.5 2.0860668 2.2 1.6149246
0.6 2.0663935 2.4 1.5613632
0.7 2.0442855 2.6 1.5107287
0.8 2.0201173 2.8 1.4631940
1.0 1.9669892 3.0 1.4188350
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Fig. 2 Total energy versus R: Same order as in Fig.

30
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Fig. 3 Total energy versus R:Comparison with Ref. [18]. Upper curve—this work

The ground-state and total energies are shown as functions of R in Figs. 1 and 2.
For this geometry with R = 1.68 the exact ground-state energy x = 1.95426 has been
proposed [15]. Our value at this spacing is x = 1.76526 a difference of just under
10 %. In Fig. 3. we show our result for the total energy Et compared to a recent study
of the equilateral case by Medel-Cobaxin et al. [18] and Levin [19].

4.3 Isoceles cases: o« = /3, w/8
For completeness we show the total molecular energy for an obtuse (@« = /3 ) and

an acute (o = /8) triangular configuration in Figs. 1 and 2. Again, in neither case is
the ion stable.
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oa=m/3
R X R X
0.0 2.1349367 1.2 1.8281244
0.1 2.1314613 1.4 1.7592914
0.2 2.1213259 1.6 1.6929713
0.3 2.1052384 1.8 1.6300407
0.4 2.0840921 2.0 1.5709739
0.5 2.0588167 2.2 1.5159789
0.6 2.0302939 2.4 1.4650897
0.7 1.9993156 2.6 1.4182289
0.8 1.9665685 2.8 1.3752500
1.0 1.8979968 3.0 1.3359649

a=m/8

R by R X

0.0 2.1349367 1.2 1.9365603
0.1 2.1331309 1.4 1.8828383
0.2 2.1277809 1.6 1.8280552
0.3 2.1190636 1.8 1.7733225
0.4 2.1072292 2.0 1.7194870
0.5 2.0925704 2.2 1.6671775
0.6 2.0754001 2.4 1.6168452
0.7 2.0560355 2.6 1.5688001
0.8 2.0347866 2.8 1.5232405
1.0 1.9877994 3.0 1.4802771

In conclusion, we have given the exact solution of the Schroedinger equation, within
the Born—Oppenheimer approximation, for a model three-center molecule closely
resembling H32+. For the equilateral configuration, where an exact ground-state energy
at R = 1.68 has been proposed [15] the value calculated here agrees to better than
10 %. Furthermore, for our model:

No multi-center molecular integrals are required.

The approximation can be systematically improved.

The corresponding Dirac equation can be solved exactly [20].

Electric and magnetic fields can be included requiring only the solution of a first
or second order ODE. [21]

e It may be feasible to treat the Kohn—Sham equations on the same basis, in which
case correlation effects can be included.
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